Peer-reviewed Papers

Porter, E.M., McMahan, C.S., Tebbs, J.M., & Bilder, C.R. (2025) Gradient boosting for group testing. Machine Learning with Applications. https://doi.org/10.1016/j.mlwa.2025.100777

Porter E.M., Franck C.T., Adams S. Flexible cost-penalized Bayesian model selection: Developing inclusion paths with an application to diagnosis of heart disease. Statistics in Medicine. 2024; 43(16): 3073-3091.  http://doi.org/10.1002/sim.10113

Porter, E.M., Franck, C.T. & Ferreira, M.A.R. (2023) Objective Bayesian model selection for spatial hierarchical models with intrinsic conditional autoregressive priors. Bayesian Analysis. Advance Publication 1 - 27. https://doi.org/10.1214/23-BA1375

Xu, S., Ferreira, M.A.R., Porter, E.M., & Franck, C.T. (2023) Bayesian model selection for generalized linear mixed models. Biometrics, 79, 3266– 3278. https://doi.org/10.1111/biom.13896

Ferreira, M.A.R., Porter, E.M., & Franck, C.T. (2021) Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects. Computational Statistics and Data Analysis, 162, 107264. https://doi.org/10.1016/j.csda.2021.107264


Other Publications


Porter, E.M., Franck, C.T., and Ferreira, M.A.R. (2024). Gaussian Spatial Hierarchical Models with ICAR Priors. In Ferreira, M.A.R. (ed.), Modeling Spatio-Temporal Data: Markov Random Fields, Objective Bayes, and Multiscale Models. CRC Press.